Role of microRNAs in endothelial cell pathophysiology

Teresa Staszel1, Barbara Zapala2, Anna Polus2, Anna Sadakierska-Chudy1, Beata Kieć-Wilk2,3, Ewa Stępień2, Iwona Wybrańska1, Monika Chojnacka2, Aldona Dembińska-Kiec2

1 Genetic Diagnostics and Nutrigenomics Unit, Department of Clinical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
2 Department of Clinical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
3 Department of Metabolic Diseases, Jagiellonian University, Medical College, Kraków, Poland

Correspondence to:
Anna Sadakierska-Chudy, MD, PhD, Katedra Biochemii Klinicznej, Uniwersytet Jagielloński, Collegium Medicum, ul. Kopernika 15a, 31-501 Kraków, Poland, phone: +48-12-424-40-06, fax: +48-12-421-40-73, e-mail: anachudy@poczta.onet.pl

Received: July 11, 2011.
Revision accepted: September 9, 2011.
Conflict of interest: none declared.
Pol Arch Med Wewn. 2011; 121 (10): 361-367
Copyright by Medycyna Praktyczna, Kraków 2011

ABSTRACT

MicroRNAs (miRNAs) are a family of small, noncoding RNAs that repress gene expression at the post-transcriptional level. Over 700 miRNAs have been identified in the human genome, of which 20% to 30% regulate human protein-coding genes. Functional in vitro studies have shown that miRNAs are critical for endothelial cell gene expression and function. miRNAs were found in atherosclerosis, cardiac hypertrophy, arterial hypertension, coronary artery disease, diabetes, and inflammatory diseases. We review the current knowledge about the role of miRNAs in endothelial cells with emphasis on the regulation of cellular senescence, angiogenesis, and vascular inflammation. It has been shown that miR-34a, miR-217, miR-200, miR-146c, and miR-181a are responsible for the regulation of cell stress and proliferation processes. Proangiogenic factors include miR-130a, miR-210, miR-424, miR-17-92, let-7i, and miR-217, while miR-221 and miR-222 have antiangiogenic properties. Other known miRNAs, including miR-31, miR-17-3p, miR-155, miR-221, miR-222, and miR-126, are important factors in the regulation of vascular inflammation. Studies show that miRNA expression analysis can be used in the diagnosis and treatment of various diseases; however, additional research is needed before it is used in routine clinical setting.

KEY WORDS

angiogenesis, endothelium, gene expression, miRNA, vascular inflammation

Introduction  MicroRNAs (miRNAs) are a family of highly conserved noncoding single-stranded RNAs (20–26 nucleotides in length) that regulate gene expression in eukaryotes. They were originally described in C. elegans and have since been identified in many organisms including humans.1 miRNAs silence gene expression by repressing protein translation or by accelerating messenger RNA (mRNA) degradation.2 They play an important role in various physiological and pathological processes including cell proliferation, differentiation, apoptosis, and metabolism as well as angiogenesis, oncogenesis, and hematopoeisis.3,4 Over 700 miRNAs have been identified in the human genome so far, and their sequences are deposited in the miRNA database (http://www.mirbase.org).3 Computational predictions suggest that about 20% to 30% of known human protein-coding genes are regulated by miRNAs.5 Deregulation of miRNA expression has been reported to be associated with several human diseases (atherosclerosis, cardiac hypertrophy, arterial hypertension, inflammatory diseases). Furthermore, miRNAs present in body fluids are highly tissue specific; therefore, they could represent useful clinical biomarkers.7,8 miRNAs are transcribed by RNA polymerase II into a primary molecule (pri-miRNA). Long primary transcripts of miRNA are cleaved in the nucleus by RNA-specific RNase III type endonuclease, Drosha, and its cofactor, DiGeorge syndrome critical region (8DGCR8). The 60–70 nt length precursor RNA (pre-miRNA) is actively transported through nuclear pores by the action of Exportin 5 (Exp5) and its partner – Ran GTP-binding protein.9,10 Pre-miRNAs are then cleaved into ~22-nt duplexes by Dicer, a cytoplasmic RNase III type endonuclease. Dicer inter-
MicroRNAs control endothelial senescence

Senescent cells are important in atherothrombosis and are related to various age-related diseases, including atherosclerosis, and cardiovascular disorders. Of note, cellular senescence plays a pivotal role in protection against cancer.

Several miRNAs are involved in the regulatory mechanisms of cellular senescence of ECs. A recent study indicated that miR-34a is already expressed in primary ECs and the degree of expression increases during cell senescence. miR-34a regulates proliferation and differentiation of many cell types, for example in ECs it decreases SirT1 (silent mating type information regulation 2 homolog; SIRT1) levels. \( ^{23} \) SirT1 is a longevity gene that protects cells against oxidative and genotoxic stress. Mammalian SirT1 is a NAD-dependent class III histone deacetylase and functions as a metabolic regulator by deacetylation of histones and large numbers of proteins including protein 53 (p53), Ku70 protein, nuclear factor \( \gamma \) (NF-\( \gamma \)), and peroxisome proliferator-activated receptor \( \gamma \). \( ^{24} \) Overexpression of miR-34a in ECs decreases SirT1 and increases acetylation of p53. Additionally, acetylated tumor suppressor p53 promotes miR-34a expression, which
microRNAs implicated in endothelial cell function

<table>
<thead>
<tr>
<th>Endothelial cells</th>
<th>miRNAs</th>
<th>Target</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellular senescence</td>
<td>miR-34a</td>
<td>SIRT1 – p53</td>
<td>stress resistance</td>
</tr>
<tr>
<td></td>
<td>miR-217</td>
<td>SIRT1 – FOXO</td>
<td>stress resistance</td>
</tr>
<tr>
<td></td>
<td>miR-200c</td>
<td>ZEB1</td>
<td>cell proliferation</td>
</tr>
<tr>
<td></td>
<td>miR-146a</td>
<td>NOX4</td>
<td>cell proliferation</td>
</tr>
<tr>
<td></td>
<td>miR-181a</td>
<td>NOX4</td>
<td>cell proliferation</td>
</tr>
<tr>
<td>angiogenesis</td>
<td>miR-221</td>
<td>c-Kit</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td>antiangiogenesis</td>
<td></td>
<td>eNOS</td>
<td>vessel permeability</td>
</tr>
<tr>
<td></td>
<td>miR-222</td>
<td>c-Kit</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eNOS</td>
<td>vessel permeability</td>
</tr>
<tr>
<td>proangiogenesis</td>
<td>miR-130a</td>
<td>GAX, HOXA5</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td>miR-210</td>
<td>Ephrin-A3</td>
<td>tube formation, chemotaxis</td>
</tr>
<tr>
<td></td>
<td>miR-424</td>
<td>CUL2/HIF-1α</td>
<td>cell proliferation, chemotaxis</td>
</tr>
<tr>
<td></td>
<td>miR-17-5p</td>
<td>TSP-1/CTGF</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td>miR-18a</td>
<td>TSR/VEGFR-2</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td>miR-19a</td>
<td>TSR/VEGFR-2</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td>miR-20a</td>
<td>VEGF</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td>miR-92a</td>
<td>ITG-α5</td>
<td>cell adhesion and cell interactions</td>
</tr>
<tr>
<td>miR-27b</td>
<td>ND</td>
<td></td>
<td>sprout formation</td>
</tr>
<tr>
<td>let-7i</td>
<td>ND</td>
<td></td>
<td>cell proliferation and migration, sprout formation</td>
</tr>
<tr>
<td>miR-217</td>
<td>SIRT1 – FOXO/eNOS</td>
<td></td>
<td>vessel formation and maturation</td>
</tr>
<tr>
<td>vascular inflammation</td>
<td>miR-31</td>
<td>E-SELE</td>
<td>leukocyte recruitment to sites of inflammation</td>
</tr>
<tr>
<td></td>
<td>miR17-3</td>
<td>ICAM-1</td>
<td>cell adhesion and migration</td>
</tr>
<tr>
<td></td>
<td>miR-155</td>
<td>AT1R/VEGFR-2</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td>miR-221</td>
<td>c-Kit</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eNOS</td>
<td>vessel permeability</td>
</tr>
<tr>
<td></td>
<td>miR-222</td>
<td>c-Kit</td>
<td>cell proliferation and migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eNOS</td>
<td>vessel permeability</td>
</tr>
<tr>
<td></td>
<td>miR-126</td>
<td>VCAM-1</td>
<td>cell adhesion and cell interactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPRED, PIK3R2/VEGFR-2</td>
<td>cell proliferation and migration</td>
</tr>
</tbody>
</table>

Abbreviations: AT1R – angiotensin II type 1 receptor, CTGF – connective tissue growth factor, CUL2 – cullin 2, eNOS – endothelial nitric oxide synthase, FOXO – forkhead box protein 01, GAX – growth arrest homeobox, HIF-1α – hypoxia-inducible factor 1α, HOXA5 – homeobox A5, ITG-α5 – integrin α5, ND – not determined, NOX4 – nicotinamide adenine dinucleotide phosphate oxidase 4, PIK3R2 – phosphoinositide-3-kinase regulatory subunit 2, SELE – selectin E, SIRT – Sir2uin 1, SPRED – sprouty-related protein with an enabled/VASP homology 1 domain, TSP-1 – thrombospondin 1, TSP – protein containing thrombospondin type 1 repeats, VCAM-1 – vascular cell adhesion molecule 1, VEGF – vascular endothelial growth factor, VEGF-R2 – VEGF receptor 2, ZEB1 – zinc finger E-box-binding homeobox 1

Accelerates suppression of SIRT1 and ultimately results in cell senescence. Overexpression of miR-34a in the endothelial progenitor cells (EPCs) also reduces SIRT1 and remarkably increases cell senescence. Similarly, silencing SIRT1 by siRNA resulted in reduced EPC-induced angiogenesis and increased cell senescence.

Another miRNA, named miR-217, is expressed in young HUVECs, human aortic endothelial cells, and human coronary artery endothelial cells. miR-217 promotes endothelial senescence through inhibition of SIRT1, which affects functions of the SIRT1/forkhead box protein O1 (FOXO1) pathway. miR-217 was absent in young cells but increased during endothelial senescence. A recent study has demonstrated that miR-200c influenced growth arrest, apoptosis, and senescence of HUVECs in response to reactive oxygen species (ROS). miR-200c targets zinc finger E-box-binding homeobox 1 (ZEB1). Down-modulation of ZEB1 protein by ROS and increased expression of miR-200c alters induction of the p53 and retinoblastoma protein tumor suppressor pathways responsible for cellular senescence. Microarray analyses have shown that miR-146a affects cellular senescence by targeting the expression of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) gene. The NOX4 complex catalyzes the reduction of molecular oxygen to ROS in the vessel wall. To summarize, decreased expression of the above miRNAs could be considered as potential therapeutic targets for delaying senescence, aging processes, and cancer development affecting EC homeostasis.

The function of microRNAs in angiogenesis and antiangiogenesis

Angiogenesis is the process of new blood vessel and
capillary network formation in the body. A large number of miRNAs are responsible for angiogenesis and are expressed in ECs.\textsuperscript{15,17,29,31} Poliseno et al.\textsuperscript{15} proved that \textit{miR}-221 and \textit{miR}-222 are anti-angiogenic factors and that they affect the expression of the human proto-oncogene c-Kit receptor in ECs. Therefore, they can modulate the activity of stem cell factor, one of the main growth factors involved in cell fate and angiogenesis. Overexpression of \textit{miR}-221 and -222 in HUVECs significantly reduced cell migration.\textsuperscript{30} Dicer silencing has revealed that \textit{miR}-221 and \textit{miR}-222 also regulate eNOS in the endothelium.\textsuperscript{16} The regulatory mechanisms of nitric oxide (NO) are essential for angiogenesis, capillary network maturation, and vascular remodeling.\textsuperscript{32,33}

Other important miRNAs involved in angiogenesis regulation are proangiogenic \textit{miR}-130a, \textit{miR}-210, \textit{miR}-424, \textit{miR}27-b, \textit{let}-7f, and the \textit{miR}-17-92 cluster.\textsuperscript{34} \textit{miR}-130a regulates expression of growth arrest homeobox (GAX) and homeobox A5 (HoxA5) proteins, which inhibit angiogenesis.\textsuperscript{30} GAX is an inhibitory factor, which affects proliferation, migration, and tubulogenic activity of ECs. Also, HoxA5 protein plays a critical role in inhibiting tubule formation in ECs. Fasana-ro et al.\textsuperscript{35} showed that \textit{miR}-210 is induced by hypoxia in HUVECs and regulates Ephin-A3. Up-regulated \textit{miR}-210 affects cell survival, migration, and differentiation in response to hypoxia.\textsuperscript{36} Overexpression of \textit{miR}-210 stimulates primary capillary network formation and the vascular endothelial growth factor (VEGF)-driven cell migration, while silencing of \textit{miR}-210 inhibits the formation of capillaries and decreases cell migration in normoxia.\textsuperscript{37}

A more recent study has provided new evidence of the novel miRNA, \textit{miR}-424, which plays an important role in postischemic vascular remodeling and angiogenesis.\textsuperscript{38} \textit{miR}-424 targets the 3’UTR of cullin 2 (\textit{CUL2}) gene, inhibits \textit{CUL2} expression and finally stabilizes hypoxia-inducible factor 1α (HIF-1α) levels. The concentration of \textit{miR}-424 is increased in hypoxic ECs and during vascular remodeling in vivo.\textsuperscript{39} Transfection of ECs with \textit{miR}-424 construct increases expression of HIF-1α and HIF-2α, which results in an increased proliferation and migration of ECs.\textsuperscript{35}

\textit{let}-7f and \textit{miR}-27b have been reported to play a significant role in EC-driven angiogenesis.\textsuperscript{4} Inhibition of their expression reduces sprout formation by HUVECs.\textsuperscript{17}

The polycistronic cluster, \textit{miR}-17-92, consists of several miRNAs: \textit{miR}-17, \textit{miR}-18a, \textit{miR}-19a, \textit{miR}-20a, \textit{miR}-19b, and \textit{miR}-92a.\textsuperscript{36} \textit{miR}-17-92 is the first miRNA with oncogenic activity, which promotes angiogenesis of tumor endothelium through downregulation of thrombospondin 1 (antiangiogenic molecules) and connective tissue growth factor.\textsuperscript{27} Another study has shown that the \textit{miR}-17-92 cluster targets p53-mediated transcriptional repression in hypoxia.\textsuperscript{23} Dewes et al.\textsuperscript{38} suggested that \textit{miR}-92a is a negative regulator of angiogenesis in ECs. Overexpression of \textit{miR}17, \textit{miR}-18a, \textit{miR}-19a, \textit{miR}-20a, and \textit{miR}-19b down-regulated sprouting in ECs, while silencing enhanced endothelial sprouting.\textsuperscript{39}

**MicroRNAs associated with inflammation** Recent reports have shown that miRNAs can control vascular inflammation by controlling leukocyte activation and infiltration through the vascular wall.\textsuperscript{3} Vascular/endothelial effect on inflammation is a process based on white blood cells and microvascular EC interactions. ECs, activated by shear stress, lipopolysaccharides, or cytokines, can modulate various mechanisms including expression of adhesion molecules and chemokines, leukocytes rolling over the endothelium, adhesion to vessels, and transmigration across the EC blood vessel walls.\textsuperscript{20,40,41} Interactions of leukocytes with the affected vessel wall cells are important for the pathophysiology of atherosclerosis.\textsuperscript{42}

Suarez et al.\textsuperscript{43} used a proinflammatory cytokine, tumor necrosis factor α (TNF-α), to induce the generation of several miRNAs in HUVECs.\textsuperscript{43} Using the microarray approach, they observed that TNF-α increases the level of \textit{miR}-155, \textit{miR}-31, \textit{miR}-17, \textit{miR}-191, and \textit{miR}-125b. In silico analyses have shown that \textit{miR}-31 targets selectin E (SELE), \textit{miR}-17-3p targets intercellular adhesion molecule 1 (ICAM-1), and \textit{miR}-155, \textit{miR}-221, and \textit{miR}-222 cotarget Ets-1.\textsuperscript{44,45} To examine the role of \textit{miR}-31 and \textit{miR}-17-3p in the expression of SELE and ICAM-1 proteins, Suarez et al.\textsuperscript{46} transfected HUVECs with sense and antisense miRNA antagonomers. The sense \textit{miR}-31 and \textit{miR}-17-3b mimicked reduced TNF-α-induced SELE and ICAM-1 levels. Overexpression of sense significantly mimicked reduced neutrophil/endothelial binding, whereas the inhibition of \textit{miR}-31 and \textit{miR}-17-3p increased neutrophil adherence to TNF-α-stimulated ECs. Results of the study indicate that \textit{miR}-31 and \textit{miR}-17-3p are essential for the regulation of neutrophil adhesion through the regulation of SELE and ICAM-1 expression.\textsuperscript{42}

\textit{miR}-126 is involved in vascular dysfunction and inflammation.\textsuperscript{7} Several studies have shown that \textit{miR}-126 regulates inflammatory cell migration, capillary network formation, and cell survival.\textsuperscript{79} \textit{miR}-126 has an intronic location in the epithelial growth factor (EGF)-like domain-containing protein 7 (EGFL7) gene and regulates its transcription in ECs.\textsuperscript{46} Fish et al.\textsuperscript{79} demonstrated that \textit{miR}-126 regulated the response of ECs to VEGF through modification of sprout-related protein with an enabled/VASP homology 1 domain (SPELD1), phosphenosidite-3-kinase regulatory subunit 2 (8) (PIK3R2), the negative regulators of VEGF signaling.\textsuperscript{29,45} Harris et al.\textsuperscript{46} found that \textit{miR}-126 inhibits vascular cell adhesion molecule 1 (VCAM-1) expression, which is involved in leukocyte adhesion to ECs.\textsuperscript{46} Inhibition of \textit{miR}-126 increases proinflammatory TNF-α expression, which activates NF-κB and interferon regulatory factor 1, and finally induces expression of VCAM-1 and adhesion of leukocytes to ECs. The angiogenic activity of \textit{miR}-126 was shown in the zebrafish
and mice with the knockdown of miR-126 causing a loss of vascular integrity. Thus, miR-126 can modify vascular inflammation through suppression of leukocyte adhesion to ECs.  

miR-155, miR-221, and miR-222 generated by HUVECs regulate Ets-1 transcription factor.  

Ets-1 is stimulated by angiotensin II, TNF-α, and thrombin and plays a key role in inflammation and microtubule formation by ECs. In addition, miR-155 targets angiotensin II type 1 receptor (AT1R) activity. Activation of AT1R by angiotensin II initiates endothelial dysfunction, structural remodeling, and vascular inflammation.  

miR-155, miR-221 and -miR-222 have been reported to regulate inflammatory response in ECs mediated by angiotensin II. miR-155 also regulates expression of adhesion molecules in inflammatory ECs. A silent polymorphism +1166 A/C of the 3'UTR of the AT1R gene was reported to be a response to vascular inflammation and cardiovascular complications. The presence of +1166C allele interferes with the ability of miR-155 to interact with the binding site.  

Recent studies have revealed that microvesicles, exosomes, and apoptotic bodies can transfer miRNA. It is possible that this is a novel genetic exchange between adjacent or distant cells. The tissue-specific miRNAs released into body fluids might serve as paracrine signaling molecules and reflect physiological and/or pathological conditions. For this reason, miRNAs are emerging as interesting, noninvasive early diagnostic biomarkers. Fichtlacher et al. suggested that the levels of circulating miRNAs associated with vascular and inflammatory conditions were downregulated in coronary artery disease. Another group demonstrated that the levels of antiangiogenic miR-503 is upregulated in diabetic patients with critical limb ischemia. The plasma level of miR-503 is significantly increased in these patients in comparison with controls and can serve as a potential circulating marker of ongoing ischemia. However, there are some limitations of the use of circulating miRNA as biomarkers. Multiple parameters, such as changes in expression in tissue, secretion of miRNA by cells, and stability of miRNA molecules, may influence its levels in plasma or serum. In addition, determining absolute amounts of miRNA has not been well-established because there is no stable control of miRNA, especially in disease conditions.  

In summary, the results described above indicate that several types of miRNAs can target a different aspect of EC/vessel wall/blood homoeostasis. These findings also provide possible future therapeutic intervention for diseases connected with endothelial dysfunction. Circulating miRNAs could be measured in body fluids as early biomarkers for disease diagnosis, prognosis, and response to treatment, but large-scale studies are required to confirm potential usefulness as predictive markers. Knowledge about miRNAs provides an opportunity to use antagonists (oligonucleotide inhibitors to silence endogenous miRNAs) and miRNA mimics to modulate biological function in the pathology of diseases. Moreover, exogenous miRNAs could be useful in the treatment of many diseases, because they are upstream regulators of gene expression involved in modification of EC activity. Further research on the roles of miRNAs in vascular disease is required for the future development of miRNA therapeutics.

REFERENCES


ARTYKUŁ POGLĄDOWY

Rola mikroRNA w patofizjologii komórek śródbłonka

Teresa Staszel¹, Barbara Zapala², Anna Polus², Anna Sadakerska-Chudy¹, Beata Kieć-Wilk²,³, Ewa Stępień², Iwona Wybrańska¹, Monika Chojnacka², Aldona Dembińska-Kieć²

¹ Zakład Diagnostyki Genetycznej i Nutrigenomiki, Katedra Biochemii Klinicznej, Uniwersytet Jagielloński, Collegium Medicum, Kraków
² Katedra Biochemii Klinicznej, Uniwersytet Jagielloński, Collegium Medicum, Kraków
³ Katedra i Klinika Chorób Metabolicznych, Uniwersytet Jagielloński, Collegium Medicum, Kraków

Adres do korespondencji:
dr med. Anna Sadakerska-Chudy,
Katedra Biochemii Klinicznej,
Uniwersytet Jagielloński, Collegium Medicum, ul. Kopernika 15a,
31-501 Kraków,
tel.: 12-424-40-06,
fax: 12-421-40-73,
e-mail: annachudy@poczta.onet.pl

Nie zgłoszono sprzeczności interesów.

SŁOWA KLUCZOWE
angiogeneza, ekspresja genów, miRNA, stan zapalny naczyń, śródbłonka

STRESZCZENIE

MikroRNA (miRNA) to grupa małych, niekodujących RNA, które regulują ekspresję genów na poziomie potranskrypcyjnym. Dotychczas w ludzkim genomie zidentyfikowano około 700 miRNA, spośród których 20–30% reguluje geny kodujące białka. Badania funkcjonalne in vitro wykazały, że miRNA są ważnym regulatorem ekspresji genów oraz funkcji komórek śródbłonka. Cząsteczki miRNA zidentyfikowano w takich stanach chorobowych, jak miażdżyca, przerost mięśnia sercowego, nacisknięcie tętnicze, choroba wieńcowa, cukrzyca oraz choroby zapalne. Niniejszy artykuł stanowi przegląd aktualnej wiedzy na temat roli miRNA w komórkach śródbłonka i koncentruje się głównie na regulacji procesu angiogenezy i starzenia komórek oraz stanu zapalnego naczyń. Wykazano, że miR-34a, miR-217, miR-200, miR-146c oraz miR-181a wpływają na regulację procesów stresu komórkowego oraz proliferację. Do czynników proangiogennych należą miR-130a, miR-210, miR-424, miR-17-92, miR-27-b, let-7f i miR-217, podczas gdy miR-221 i miR-222 wykazują działanie antyangiogenne. Inne znane miRNA, takie jak miR-31, miR-17-3, miR-155, miR-221, miR-222 oraz miR-126, są ważnymi czynnikami regulującymi stany zapalne naczyń. Z badań wynika, że analiza poziomu ekspresji miRNA może być wykorzystana w diagnostyce i leczeniu różnych chorób, jednak wprowadzenie jej do rutynowej diagnostyki klinicznej wymaga dalszych badań.

SŁOWA KLUCZOWE
angiogeneza, ekspresja genów, miRNA, stan zapalny naczyń, śródbłonka

STRESZCZENIE

MikroRNA (miRNA) to grupa małych, niekodujących RNA, które regulują ekspresję genów na poziomie potranskrypcyjnym. Dotychczas w ludzkim genomie zidentyfikowano około 700 miRNA, spośród których 20–30% reguluje geny kodujące białka. Badania funkcjonalne in vitro wykazały, że miRNA są ważnym regulatorem ekspresji genów oraz funkcji komórek śródbłonka. Cząsteczki miRNA zidentyfikowano w takich stanach chorobowych, jak miażdżyca, przerost mięśnia sercowego, nadciśnienie tętnicze, choroba wieńcowa, cukrzyca oraz choroby zapalne. Niniejszy artykuł stanowi przegląd aktualnej wiedzy na temat roli miRNA w komórkach śródbłonka i koncentruje się głównie na regulacji procesu angiogenezy i starzenia komórek oraz stanu zapalnego naczyń. Wykazano, że miR-34a, miR-217, miR-200, miR-146c oraz miR-181a wpływają na regulację procesów stresu komórkowego oraz proliferację. Do czynników proangiogennych należą miR-130a, miR-210, miR-424, miR-17-92, miR-27-b, let-7f i miR-217, podczas gdy miR-221 i miR-222 wykazują działanie antyangiogenne. Inne znane miRNA, takie jak miR-31, miR-17-3, miR-155, miR-221, miR-222 oraz miR-126, są ważnymi czynnikami regulującymi stany zapalne naczyń. Z badań wynika, że analiza poziomu ekspresji miRNA może być wykorzystana w diagnostyce i leczeniu różnych chorób, jednak wprowadzenie jej do rutynowej diagnostyki klinicznej wymaga dalszych badań.
Redaktor Naczelna Polskiego Archiwum Medycyny Wewnętrznej ogłasza ogólnopolski konkurs dla studentów na najlepszą pracę oryginalną dotyczącą zagadnień z zakresu medycyny wewnętrznej. Do udziału w konkursie zapraszamy wszystkich studentów uczelni medycznych, w tym studentów studiów doktoranckich.

Autorzy 3 najlepszych prac otrzymają nagrody w wysokości 3000 zł, 2000 zł i 1000 zł, a ich prace zostaną opublikowane w numerze lipcowym Polskiego Archiwum Medycyny Wewnętrznej, które w 2012 roku po raz pierwszy otrzyma impact factor.


Informacji udziela redakcja Polskiego Archiwum Medycyny Wewnętrznej ul. Skawińska 8, 31-066 Kraków, e-mail: pamw@mp.pl, tel.: 12-293-42-29.