Pneumonia e Vitamina C

Vitamin C for preventing and treating pneumonia

Hämiä H, Louhiala P

A substantive amendment to this systematic review was last made on 11 November 2006. Cochrane reviews are regularly checked and updated if necessary.

Abstract

Background

Pneumonia is one of the most common serious infections, causing two million deaths annually among young children in developing countries. In developed countries pneumonia is most significantly a problem of the elderly.

Objective

To assess the prophylactic and therapeutic effects of vitamin C on pneumonia.

Search strategy

We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2006, Issue 1), OLD MEDLINE (1950 TO 1965), MEDLINE (1966 to February Week 2, 2006), EMBASE (1974 to March 2006), Web of Science (1945 to February 2006) and reference lists of reviews and articles.

Selection criteria

To assess the therapeutic effects of vitamin C, we selected placebo-controlled trials. To assess prophylactic effects, we selected controlled trials with or without a placebo.

Data collection and analysis

Two review authors independently read the trial reports and extracted data.

Main results

We identified three prophylactic trials which recorded 37 cases of pneumonia in 2,335 people. Only one was satisfactorily randomised, double-blind and placebo-controlled. Two trials examined military recruits and the third studied boys from "lower wage-earning classes" attending a boarding school in the UK during World War II. Each of these trials found a statistically significant (80% or greater) reduction in pneumonia incidence in the vitamin C group. We identified two therapeutic trials involving 197 pneumonia patients. Only one was satisfactorily randomised, double-blind and placebo-controlled. One studied elderly patients in the UK which found lower mortality and reduced respiratory symptom scores in the vitamin C group; however, the benefit was restricted to the most ill patients. The other studied adults (with a wide age range) in the former Soviet Union and found a dose-dependent reduction in the time to recovery with two vitamin C doses.

Reviewers' conclusions

The prophylactic use of vitamin C to prevent pneumonia should be further investigated in populations who have high incidence of pneumonia, especially if dietary vitamin C intake is low. Similarly, the therapeutic effects of vitamin C should be studied especially in patients with low plasma vitamin C levels. The current evidence is too weak to advocate widespread prophylactic use of vitamin C to prevent pneumonia in the general population. However, therapeutic vitamin C supplementation may be reasonable for pneumonia patients who have low vitamin C plasma levels because its cost and risks are low.

Synopsis

Vitamin C supplementation may have preventive effects in populations with a high incidence of pneumonia and may have therapeutic effects in populations with low plasma vitamin C levels.

Pneumonia is an infection of the lungs caused by bacteria, viruses or other infectious agents. Its clinical diagnosis is sometimes difficult. Pneumonia is more common in young children and in the aged. In developing countries it causes two million deaths annually among young children. In the USA it is the most common cause of death from infection. Vitamin C was identified in the early 1900s. Suggestions that one of its biological roles may be in resisting infections are supported by numerous animal studies. We looked for studies in humans. We found three trials that looked at whether vitamin C prevents pneumonia. Two of the preventive trials studied soldiers while the third studied boys in a UK boarding school in the 1940s. Two further trials looked at whether vitamin C might help in curing pneumonia. One studied patients aged 66 to 94 years in the UK with pneumonia. Benefit was restricted to those who were most ill and had low vitamin C levels. For the other trial, in the former Soviet Union, the social and nutritional backgrounds of the patients were not described. Overall, the results of the five identified trials suggested vitamin C is beneficial in both preventing and treating pneumonia. However, these trials were carried out in such extraordinary conditions that the results may not apply to the general population. More research is needed; but in the meantime, supplementing pneumonia patients who have low plasma vitamin C levels may be reasonable because of its safety and low cost.

Background

Pneumonia is an infection of the lungs and can be caused by bacteria, viruses, Rickettsia, fungi or parasites. Nearly 100 species have been identified as etiological agents (Donowitz 2005; Fine 2003). Although the pathological definition of pneumonia is clear the clinical diagnosis is sometimes ambiguous. The risk of pneumonia is increased in young children and the elderly. In developing countries, pneumonia causes two million deaths annually among children under five years of age (Graham 1990; Jones 2003; Rudan 2004). In the USA, pneumonia is the sixth most common cause of death and the most common cause of infection-related death (Donowitz 2005). The major role of vitamin C in the immune system seems to be as a physiological antioxidant, protecting host cells against oxidative stress caused by infections. Its concentration in phagocytes and lymphocytes is very high. In various experimental settings vitamin C increased the functioning of phagocytes, the proliferation of T-lymphocytes and the production of interferon; and decreased replication of viruses (Beisel 1982; Hemilä 1997a; Hemilä 2003; Thomas 1978).
Although vitamin C affects the immune system the mechanism seems non-specific and might be important only in particular conditions. For example, it is possible that variation in vitamin C intake does not affect the immune system in the ordinary Western population because of their relatively high dietary intake levels. Vitamin C might, however, be a limiting factor in populations with low intakes. An extreme example is the high prevalence of frank vitamin C deficiency, apparent as scurvy, in refugee camps in the Horn of Africa; reported to be up to 44% (WHO 1999a). Vitamin C metabolism is affected in various infections, including pneumonia, as indicated by decreased urinary ascorbic acid (Hemilä 1998; Hemilä 2006a). Because of these changes in metabolism, vitamin C might have a treatment effect on pneumonia irrespective of dietary intake. In animal studies, vitamin C increased resistance to various viral and bacterial infections (Hemilä 2006a).

In the early 1900s, Alfred Hess carried out extensive studies of scurvy and summarized a large series of autopsy findings: "pneumonia, lobular or lobar, is one of the most frequent complications of scurvy and causes of death" and "secondary pneumonias, usually broncho-pneumonic in type, are of uncommon occurrence, while the primary occurrence of pneumonia, at about the same time (Robertson 1934). Since the 1930s, a few German and US physicians have proposed that vitamin C might be beneficial in the treatment of pneumonia (Hemilä 1999). Gander and Niederberger concluded from a series of 15 cases that "the general condition is always favorably influenced [by vitamin C] to a noticeable extent, as is the convalescence, which proceeds better and more quickly than in cases of pneumonia without vitamin C, and within two weeks vitamin C-containing 1936 C was reported in a series of over 40 cases (Klener 1948; Klener 1951) and in three cases of viral pneumonia (Dalton 1962). A large dose of oral vitamin C was also claimed to be beneficial in patients with viral pneumonia (Cathcart 1981; Luberoiff 1978).

The effect of vitamin C on the common cold has been studied extensively. A major finding from the trials is the heterogeneity in its effects. Although the largest trials found no effect on common cold incidence, the incidence was reduced in trials with participants under heavy acute physical stress and with British males, which was explained as the result of a diet low in vitamin C (Douglas 2004; Hemilä 1996; Hemilä 1997b; Hemilä 2006a). Consequently, it is possible that the effects of vitamin C on other respiratory infections are also modified by various factors, such as physical stress and dietary vitamin C intake. Also, two large trials found considerable divergence in the effects of vitamin C depending on the type of cold. Vitamin C decreased the incidence of 'chest colds' (-18%; cough or other chest symptoms) but not of 'simple colds' (+1%; runny nose or sneezing), (-21%) but not 'nose colds' (-2%) (Anderson 1973; Hemilä 1997b). These two trials thus suggest that vitamin C might have a greater effect on infections affecting the lower respiratory tract.

In close parallel with vitamin C, lipid-soluble vitamin E is interesting as these two antioxidants interact; vitamin C reduces oxidized vitamin E levels (Hamilton 2000; Hemilä 2006a; Packer 1979). In a large-scale trial the effect of vitamin E on the risk of pneumonia was modified by the age at which participants began smoking such that vitamin E reduced the risk in those who began smoking at a later age but increased the risk in those who began smoking at an early age (Hemilä 2006a). Vitamin E reduced the risk of pneumonia by 50% in participants who exercised, also suggesting heterogeneous effects between population groups (Hemilä 2006a; Hemilä 2006b). Even though direct extrapolation of findings from vitamin E studies to vitamin C are unjustified, the notion that various factors may modify the effects of antioxidants is fundamental in restricting broad generalizations from individual trials, irrespective of whether the finding is positive or negative and whether or not the trial is large and carefully conducted.

Approximately 10 mg/day of vitamin C prevents scurvy but the safe dose range extends to grams per day. In the US nutritional recommendations, the ‘tolerable upper intake level’ is stated to be 2 g/day for adults. The basis for this upper limit is the appearance of diarrhea (JOM 2000) which is, however, a trivial adverse effect that disappears quickly with a reduction in intake. Furthermore, it has been stated that patients with pneumonia can take 100 g/day of vitamin C without developing diarrhea, possibly because of the changes in vitamin C metabolism (Cathcart 1981).

Pneumonia is a fairly common and severe infection and vitamin C is a safe and inexpensive essential nutrient. The possibility that vitamin C might affect susceptibility to pneumonia, even in restricted population groups, is worthy of examination. Similarly, the possibility that vitamin C treatment might affect the duration or severity of pneumonia, or both, is worthy of systematic consideration. One previous meta-analysis assessed the preventive effects of vitamin C on pneumonia (Hemilä 1997c) but the therapeutic effect on pneumonia has not so far been assessed systematically.

Links to the publications cited in this section, for which full text versions are available, can be found at www.tdk.helsinki.fi/users/hemila/CP/.

Description of Study

The MEDLINE search retrieved 72 publications (three from OLD MEDLINE, 1950 to 1965); the EMBASE search retrieved 241; the Web of Science search 41; and the CENTRAL search 11 publications. From these search results we found three controlled trials which provided data pertinent to the prevention of pneumonia with vitamin C supplementation and two trials which provided data on the therapeutic effect of vitamin C. The main features of the trials are summarized in the table 'Characteristics of included studies'. The most relevant of these trials were summarized in the table 'Characteristics of excluded studies'. Links to the trial reports and translations can be found at www.ltdk.helsinki.fi/users/hemila/CP/.

The Gizebrook 1942 trial was the oldest trial identified. The structure of the paper is quite different from more modern trial reports: "In the 1930s our observation there were some 1500 youths aged 15-20 years. For the most part they were drawn from the lower wage-earning classes... The food distribution [at the school] was badly managed... Often 8 hr. elapsed between the time the food was cooked and its arrival on the dining tables... The total intake of vitamin C varied from about 10 to 15 mg per student per day" (pages 4 to 5). "Pure ascobic acid powder was added to... the morning cocoa, and an evening glass of milk. The mixing was done in bulk in the kitchens before use. The powder dissolved quickly and easily, and did not alter the appearance or taste of the dishes" (pages 7). We considered that this trial was not controlled because the participants were unable to identify the treatment, although no inactive powder was added to the food of the control group. "The establishment was given to the numerous cases of scurvy which appeared at about the same time" (Robertson 1934).
etc.) to establish certain criteria for the diagnosis" (page 16). However, it was not stated whether the diagnosis of pneumonia was carried out by the trial authors of the paper or the physicians at the Sick Quarters. Although the method of diagnosing pneumonia was not described in detail in the paper, with the given descriptions and the severe pathological processes occurring in pneumonia it seems unlikely that vitamin C treatment would have substantially affected the diagnosis of pneumonia.

The Kimbarowski 1967 trial was poorly described. Although published in German an English translation is available. The main focus of the trial was to examine a chemical test, which is not relevant to the current review. However, as a secondary issue, the trial authors reported the number of bronchopneumonia cases in vitamin C and control groups after hospitalization. The trial authors excluded the pneumonia cases from their further study (page 2414). For this review the pneumonia cases are relevant since they occurred after vitamin C supplementation was initiated. Although the pneumonia cases occurred after hospitalization, they occurred within a week and thus did not fall into the category of nosocomial pneumonia. "The studies were conducted with the use of soldiers allocated by the highest authority of the case. The diagnosis was based on radiographic pictures and epidemiological data with serological confirmation in a series of cases involving the type A virus." The geographic location where the trial was carried out, the military institution(s), the hospital in which the trial was carried out and the characteristics of the soldiers were not described. The allocation method was not described but the study arms were of closely similar size (112 versus 114 in vitamin C arms). Of the two trial arms, the pneumonia group was 50 patients before, 25 patients before the vitamin C group was sequentially to the two trial arms. The two arms were well balanced for severity of the influenza. The number of severe cases was 64 versus 65, moderate cases 26 versus 32, and mild cases 12 versus 14 in the two arms respectively (page 2414); the pneumonia cases were not included in these figures. A placebo was not mentioned in the paper and apparently was not used. Blinding of outcome assessment was not described. However, since the placebo was a secondary issue in the study, the trial authors did not have reason to consider blinding as a factor. Between the trial arms there was no substantial bias in their diagnosis of pneumonia. CXR ("Röntgenoscopie") was explicitly mentioned in the paper as a method that was used. It is probable that the diagnosis of bronchopneumonia was based on the CXR however this was not explicitly stated in the paper.

Pitt 1979 were primarily interested in the effect of vitamin C on the incidence of the common cold; however, other severe respiratory infections including pneumonia were also recorded. "The participants were male marine recruits who underwent 11 weeks of recruit training as a part of their basic military training at Parris Island, South Carolina in October to December ... Pill taking did not begin until the recruit's third week at Parris Island" (page 908). "These 862 recruits were assigned randomly to either the vitamin C or placebo group from a list of consecutive numbers randomized in pairs. Randomization was carried out by individuals within each platoon" (page 908). "Of the 862 recruits who began taking the pills, 64 recruits (34, vitamin C; 30, placebo) were removed from their platoons by the US Marine Corps for further training or for discharge during the eight-week study period. An additional 123 recruits (64: vitamin C; 59: placebo) were excluded from the trial because of the eight-week study period. Of the 679 recruits remaining, 335 were assigned to the vitamin C group because of recurrent urticaria related to taking the tablets" (page 909). "Before the initiation of pill taking, each recruit received adenovirus 4 and influenza vaccines and either intramuscular penicillin G benzathine or oral erythromycin as streptococcal prophylaxis" (page 908). "Pill taking was supervised and observed by the drill instructors in each platoon. Neither the recruiters or drill instructors nor the physicians and corpsmen who treated the recruits were aware of which pill any individual was taking. The allocation of the study group members was indicated in placebo tablets with vitamin C tablets" (page 908). "Pneumonia developed in eight recruits. ... Each of these eight recruits had typical roentgenographic and physical signs of pneumonia, although five recruits were febrile and only four recruits had elevated white blood cell counts. Pneumococci were isolated from the sputum in three recruits and seen intracellularly on Gram's stain in two other recruits. Two of these recruits also had purulent meningitis in parainfluenza type I. Each of these recruits returned to his platoon after a mean Medical Dispensary stay of 4.4 days" (page 910). "Pill taking did not evaluate diastolic blood pressure; however, their systolic blood pressure level was rather high initially, 56 µmol/L (10 mg/L) (page 909), which would correspond to a dietary intake of 100 mg/day or more (Levine 1999). After six weeks, the vitamin C level was 77 µmol/L (+36%) in the vitamin C supplemented group and 52 µmol/L (−7%) in the placebo group (page 909)."

It is stated that "The patients enrolled into this study were suffering from acute bronchitis (often acute exacerbation of chronic bronchitis) or bronchopneumonia. Patients suspected or known to be suffering from lung cancer were excluded from the study, as were those who were judged by the clinician to be at high risk of death within a day or two of admission" (page 213). Thus the patients were a mixture of bronchitis and pneumonia patients, whereas in our methods section our purpose was to focus on chronic bronchitis. Nevertheless, the wider definition of lower respiratory tract infection in this trial needs to be considered when drawing conclusions. "The patients were enrolled over a period of three years and were admitted mainly in the winter months... acute respiratory infection had, in all cases, been the primary reason for hospitalisation" (page 213). "For consistency all clinical assessments were performed by the same Associate Specialist. Three main diagnostic features of infective respiratory conditions, namely cough, breathlessness and radiographic evidence of chest infection were used. Each was scored by the clinician according to severity. Thus for each person, at each assessment interval, his or her three main diagnostic feature scores were added to give the 'total respiratory score'. By this procedure, the worst score that could be achieved by the most severely ill patient (whilst still alive) was 9, whilst those who were completely well with regard to the respiratory condition would score 3. A score of 10 was given for subjects who died during the trial. Assessments were made on admission (0 weeks) and at 2 and 4 weeks after admission. If patients were discharged from hospital as 'well' before 4 weeks, therapy was discontinued and they were assumed to remain well for up to 4 weeks, for the purpose of clinical scoring (none of the patients discharged were readmitted during their 4 week assessment period)" (page 213). "The clinical score results were approximately normally distributed..." (page 214), which allowed us to use the t-test in the comparison of the clinical score values. "After the initial clinical assessment... the patients commenced placebo or vitamin C therapy to which they were allocated on a randomised 'double-blind' basis. This was in addition to their normal medication" (page 213). Thus, the test of vitamin C effects was "over and above those of normal medication (mainly antibiotics and cough medicines) to which all participants were exposed" (page 217). "The vitamin C and placebo tablets were indistinguishable from each other by look or taste" (page 213). "None of the subjects who died on the trial had any secondary diagnosis, including ischemic heart disease, and death was attributed directly to respiratory infection in each case" (page 217). At baseline, the mean plasma vitamin C level was 23.3 µmol/L; and 35% patients had a vitamin C level lower than 11.4 µmol/L (Page 215). After four weeks, the vitamin C level was 94.9 µmol/L (+307%) in the vitamin C group but only 24.4 µmol/L (+5%) in the placebo group (Page 215). The paper by Mochalkin 1970 is in Russian and a translation to English is available. The selection criteria for the participants were not described, neither were many other methodologically relevant aspects. Placebo was not mentioned and probably was not used in the control arm. However, participants in two other trial arms were administered different doses of vitamin C and the lower dose arm was used as the reference group in the primary analysis of this review because it seems unlikely that the difference in outcome of these two groups might be explained by the placebo effect. The group of patients comprised 140 males diagnosed with acute pneumonia hospitalized during the first two days of onset of the disease [124 patients were 20 to 60 years of age, and 16 were over 60 years]. Depending on the mode of basic treatment, the patients were divided into three groups: Group I (70 patients) was treated with antibiotics without ascorbic acid (25 patients were treated with penicillin, 15 with streptomycin, 15 with penicillin and streptomycin, and 15 with tetracycline); Group II (39 patients) was treated with antibiotics combined with vitamin C (50 mg per 100,000 antibiotic units) (15, 8, 8 patients in the antibiotic groups, respectively); Group III (31 patients) was treated with antibiotics combined with ascorbic acid (100 mg per 100,000 antibiotic units) (10, 7, 7 patients in the antibiotic groups, respectively) (Page 18). Ascorbic acid powder was taken orally. Both antibiotics and ascorbic acid were used for 10 days... All patients were tested under equal conditions of placement, care, and nutrition, and were subjected to a complex treatment which included antibiotics ... To monitor the effectiveness of the employed methods of treatment we used the following parameters: dynamics of temperature normalisation, erythrocyte sedimentation rate, leucocyte quantity in the peripheral blood, timing of wet rattle disappearance, duration of roentgenologically-
determined changes in the lungs, and the mean period of recovery" (page 18). At baseline, the mean plasma vitamin C level was 41 µmol/L. After 10 days treatment, the vitamin C level was 43 µmol/L (+7%) in the higher dose vitamin C group but only 23 µmol/L (−44%) in the control group.

Results

Preventing pneumonia

Three trials reported the number of pneumonia cases in vitamin C and control groups and all these trials found an 80% or greater decrease in the incidence of pneumonia in the vitamin C group (Comparison 01.01). Since the number of cases in the vitamin C groups was very low, zero to two cases in all of the trials, we used the Peto method for calculating the OR as an approximation to the RR. The confidence intervals (CI) in the three trials were wide and overlapped substantially. However, the trials were clinically so heterogeneous that we did not calculate a pooled estimate of effect because we do not consider that such a pooled estimate was meaningful. Nevertheless, all three trials tested the general question of whether vitamin C differs from placebo as to susceptibility to pneumonia. The Peto’s OR method is suitable for calculating an estimate of OR and its CI. However, with only a few observed cases, the mid-P value was the more appropriate method to compare the study groups. In each of the three prophylactic trials, the mid-P value (2-t) for the comparison of trial arms was below 0.05 and the combined mid-P value (2-t) for the three trials was 0.00004 (Hemila 1997c) indicating that the differences between the vitamin C and control arms in the three trials were unlikely to be explained by random variation.

Subgroup analysis by vitamin C dosage less or more than 100 mg/day did not reveal any effect of the dose; however, the trials were clinically so heterogeneous and the number of cases so low that we could not make any conclusions about dose-dependency.

All three trials mentioned the usage of the chest radiograph (CXR) but none of them provided a well-defined case definition of pneumonia. Thus we did not carry out a subgroup analysis by use of a CXR for diagnosis.

We carried out sensitivity analysis in this set of prophylactic trials by excluding trials that did not use randomisation and placebo. This left the Pett 1979 as the only trial with high quality methodology. Nevertheless, the findings of the Pett 1979 trial did not meaningfully differ from the other two trials. As noted above, the trials were clinically heterogeneous and we do not expect the same treatment effect in such variable conditions; however, there was no evident trend for the most positive findings to occur in methodologically less satisfactory trials.

In the Glazebrook 1942 trial, allocation to treatment groups was carried out by institute ‘divisions’ and not on the basis of individual boys. Therefore, we also analyzed the Glazebrook 1942 trial using the ‘division’ as the unit of observation. Distribution of pneumonia cases in the five control divisions was 5, 3, 2, 4, and 3 (mean 3.4 cases per division) and in the two vitamin C divisions it was 0 and 0. We assumed that the mean of the control divisions was a suitable estimate for the Poisson distribution mean and used that assumption as a basis for statistical analysis. The size of the individual divisions was not stated in the paper but the two vitamin C divisions had on average 167 boys (335/2) and the five control divisions 220 boys (1100/5), thus the size of the vitamin C divisions was 0.76 times the size of control divisions. We adjusted the mean incidence by this ratio so we expected 2.6 pneumonia cases per vitamin C division as a Poisson distribution mean, which we used as the Poisson probability for a division. The incidence of pneumonia in one vitamin C division as P value = 0.074 and no case in two separate vitamin C divisions as having a P value = 0.006. Accordingly, using a ‘division’ as the unit of observation also revealed a significant difference between the vitamin C and control groups.

Treating pneumonia

Two trials examined the effect of vitamin C on patients with pneumonia (Mochalnin 1970) or pneumonia and bronchitis (Hunt 1994). Hunt 1994 found 85% lower mortality in the vitamin C group compared with the placebo group but this comparison was based on six cases only (Comparison 02.02). For this difference the mid-P value = 0.12. In addition, Hunt examined the change in total respiratory score at four weeks and these data are presented in . There was statistically marginal significance of overall benefit on the respiratory score with vitamin C but in a subgroup analysis based on the baseline severity of disease the benefit was restricted to patients who were most severely ill when admitted to the hospital. These most severely ill patients had substantially lower vitamin C plasma levels compared with the less ill patients. In the less ill patients there was no difference between the trial arms (). In their report Hunt 1994 published the scores for all participants and for the most severely ill patients; for this review we calculated the scores for the less ill patients, see .

Mochalin 1970 had three trial arms: control, low vitamin C and high vitamin C. The control arm was not administered a placebo and, therefore, we restricted our primary analysis to the comparison of the two vitamin C arms (Comparison 02.03). Because of their practice of administering multiple other treatments, we considered the control arm to be a no-treatment arm rather than a placebo arm. The vitamin C dose of the higher dose arm was exactly double that of the lower dose arm although the dosage ranges within both vitamin C arms varied and overlapped (see ‘Characteristics of included trials’). There was a statistically highly significant decrease in length of hospital stay in the higher vitamin C dose arm compared with the lower dose arm.

As a secondary analysis we presented the results of the three arms of the Mochalin 1970 trial . Mochalin reported the proportion of participants with no fever after seven days and with normalization of the CXR in 10 days. For both outcomes, the vitamin C arms fared significantly better than the control arm. The number needed to treat (NNT) was around five for these two outcomes compared to the control group ().

We had planned a subgroup analysis of therapeutic trials by vitamin C dosage less and more than 1 g/day. Hunt 1994 used only 0.2 g/day. One of the Mochalin 1970 arms was lower than the limit but the other arm had a range over the planned limit and the planned subgroup analysis was thus not possible. However, the Mochalin 1970 results suggest dose-dependency (). The duration of recovery was reduced from 23.7 days in the control group by 4.6 days (19%) in the low dose vitamin C arm and by 8.6 days (36%) in the high dose vitamin C arm. Since the mean vitamin C dose in the high vitamin C arm was exactly twice the mean of the lower vitamin C arm, the linearity in this response is striking ().

Sensitivity analysis based on the rejection of trials which were not randomised left the Hunt 1994 trial as the only trial with high quality methodology. Thus, there was no evident trend to suggest that positive findings might be simply explained by methodological shortcomings of the trials.

Both therapeutic trials used CXR when evaluating patients but neither provided a well-defined case definition of pneumonia; nor of lower respiratory tract infection in the Hunt trial. Mochalin used normalization of CXR as one of their outcomes, which implies that changes in CXR were included in their criteria to define pneumonia.

Discussion

Quality of the evidence

We identified three trials that reported on the preventive effect of vitamin C against pneumonia and two trials that reported on the effect of vitamin C on patients with pneumonia. Each of these trials found statistically significant benefit of vitamin C supplementation on at least one clinically relevant outcome. Two of the trials were placebo-controlled RCTs, whereas the other three trials were technically deficient to varying degrees. Here we considered whether potential biases could explain the differences between the vitamin C and control groups.

The concept of publication bias is based on an assumption that researchers tend to report a study if the result is ‘positive’ and tend to leave unreported if the result is ‘negative’. With this reasoning it might be possible that the five trials analyzed in this review were published just because of the significant benefit of vitamin C, whereas there might be several trials unpublished because of their negative results. However, the three papers reporting on the prophylactic effect of vitamin C were published separate to the effect of vitamin C on pneumonia, the benefit on pneumonia not being the motive for publication. Glazebrook 1942 was mainly interested in the common cold and tonsillitis and the effect on pneumonia was mentioned as a secondary issue, indicating that this finding was not the reason for publication. Kimbarowski 1967 considered pneumonia as a nuisance in their trial as they focused on a chemical test. They did not pay
any attention to the substantial difference in the occurrence of pneumonia in the trial arms and, for example, in their summary the pneumonia cases in both trial arms were combined. Pitt 1979 focused on the common cold and pneumonia was a secondary outcome which was reported in the text but not in the abstract. Thus these three reports are inconsistent with publication bias as an explanation for the set of positive reports. This explanation with regard to the background of the investigators is also relevant when considering detection bias (see below).

In the case of the therapeutic trials by Hunt and Mochalkin, there were biological consistencies which are not easily explained by pure chance. Hunt 1994 found that the benefit was limited to the patients with the lowest vitamin C levels, which is biologically reasonable (.). Mochalkin 1970 found a linear dose-response relation in the two vitamin C arms compared with the control group (.). Neither Hunt nor Mochalkin paid proper attention to these findings and thus they were not likely to be the basis for publication. Furthermore, speculation on a large number of unpublished trials to explain positive reported findings is not science in the popperian sense as such a hypothesis can never be refuted. Thus we do not consider publication bias as a reasonable explanation for the reported positive findings in the published prophylactic and therapeutic trials.

Selection bias means that there are systematic differences in the compared groups at baseline. In therapeutic trials the severity of disease is a factor of obvious importance. The Hunt 1994 trial was randomised and allocation was concealed. The distribution of ‘acute bronchitis’ and ‘bronchopneumonia’ and the proportion of ‘most severely ill’ were closely similar in the treatment arms. Mochalkin 1970 did not describe the distribution of pneumonia severity but antibiotic treatments were distributed evenly in the three arms so that if the selection of antibiotics depended on the clinical symptoms they were also divided evenly.

In prophylactic trials there is a lower possibility of bias caused by baseline differences between the treatment arms. Maldistribution of a strong risk factor, such as smoking in a study of lung cancer, may however lead to erroneous conclusions. Cohort studies have not identified smoking as a risk factor of the acquired pneumonia (Baik 2000; Hemilä 2004). Thus, to explain an 80% or more reduction in the incidence of pneumonia in the vitamin C arms (Comparison 01.01) would require that there is a strong risk factor that is spectacularly maldistributed. Furthermore, the Pitt 1979 trial was randomised and double-blind and Glazebrook 1942 used pre-formed divisions and explicitly considered that the groups of schoolboys were similar. In the Kimbarowski 1967 trial the severity of influenza probably was the most important risk factor for the occurrence of pneumonia but it was described in the text. In the other trials, it seems unlikely that systematic baseline differences between the trial arms would explain the benefits observed in the vitamin C arms.

Performance bias means systematic differences in the care provided apart from the intervention being evaluated. The Hunt 1994 and Pitt 1979 trials were double-blinded. According to the Glazebrook 1942 description, the boys in different divisions were treated equally. Kimbarowski 1967 stated that the participants received the same diet but otherwise the similarity of other treatments was not mentioned. Mochalkin 1970 stated that all conditions of the patients of the two groups except the treatment received were distributed evenly in the treatment arms. Although Mochalkin did not use a placebo in the control group, the placebo effect does not explain the difference between the two vitamin C arms (Comparison 02.03 and). Furthermore, with the significant difference in pneumonia duration in the two vitamin C groups it is not reasonable to assume that the difference between the control group and the low dose vitamin C group might be caused by the placebo effect alone. Such an explanation would presuppose that there is a threshold dose which has no effects at lower doses; only at higher doses. Such a dose-response model would be opposite to the findings of many studies indicating that the benefits are more pronounced in the low dose region (see below comments on ‘marginal vitamin C deficiency’). Thus, in two trials there was good evidence that participants were treated equally except for the vitamin C supplementation and in the other trials there was no explicit reason to assume that the treatments would substantially differ between the trial arms.

Attrition bias means high or divergent drop-out proportions and do not seem to be a substantial concern in these five trials. The three trials examining the preventive effect of vitamin C were carried out within military organizations or in a boarding school. The background and descriptions in the papers did not suggest a considerable drop-out problem. Pitt 1979 stated that 22% of the initial population were removed from their platoons or did not continue to take their pills and were not included in the final analysis but the drop-outs were distributed evenly in the treatment arms. Pitt 1979 followed up the patients for four weeks and did not report any drop-outs. Mochalkin 1970 did not comment on drop-outs but the distribution of antibiotic usage was even in the trial arms, which would seem to exclude any drop-outs.

Detection bias means systematic differences in outcome assessment. The Hunt 1994 and Pitt 1979 trials were double-blinded and, therefore, biased by the knowledge of participants or investigators was unlikely to have affected the outcome assessment. As not described in the Glazebrook 1942, Kimbarowski 1967, and Pitt 1979 trials, pneumonia was a secondary outcome and it is unlikely that under such conditions the investigators would have any tendency to diagnose pneumonia differently in the trial arms. The Mochalkin 1970 report did not allow any direct conclusions on the possibility of detection bias. Thus, two of the pneumonia trials were placebo-controlled, double-blind RCTs. Even though the other three trials were methodologically less satisfactory in comparison with modern trial standards, the positive findings of these latter three trials are not easily explained by biases.

Applicability of evidence

Although we consider that the findings of the analyzed pneumonia trials are reliable, we understand that great caution is required in the interpretation of the findings because of various biological factors, for example, vitamin C amounts in the diet and the kind of participants in the trials. Both Pitt 1979 and Kimbarowski 1967 examined soldiers who had substantially dissimilar living conditions compared with ordinary adults. Furthermore, Kimbarowski’s soldiers were hospitalized because of influenza A, making them a very special group of people. Glazebrook 1942 studied teenage boys in a UK boarding school during World War II. The age range of Hunt 1994 patients was from 66 to 94 years, obviously restricting any generalizations towards young people. Mochalkin 1970 included a wide age-range of participants but their social background and living conditions were not described in the text.

An important feature related to the patient selection in the prevention trials was the very high incidence of pneumonia. Glazebrook 1942 and Pitt 1979 recorded 60 and 120 cases of pneumonia per 1000 person-years in their control arms, respectively, and Kimbarowski 1967 reported that 10% of their control arm became sick with pneumonia within one week after hospitalization. In contrast, in the ordinary middle-aged Western population the incidence of pneumonia is 1 to 3 per 1000 person-years (Baik 2000; Hemilä 2004). Hence, the high incidence of pneumonia makes the conditions of the prevention trials very special and limits generalizations of their results.

A further issue of great importance is the level of vitamin C intake, in diet and in supplements. A different outcome between vitamin C and control arms may result from a very low dietary intake in the control arm (‘marginal vitamin C deficiency’) or from high dose supplementation in the vitamin C arm. In the former case, a small dosage of supplement might produce a similar effect, whereas in the latter case dose is essential to ensure a reference level. Thus, the benefit of vitamin C supplementation might be caused by vitamin C intakes less than 10 mg/day, whereas the mean vitamin C intake in the USA is about 100 mg/day (JOM 2000). Glazebrook 1942, estimated that their participants got only 10 to 15 mg/day of vitamin C in their diet, so that the baseline intake was close to scurvy levels. Kimbarowski 1967 and Mochalkin 1970 carried out their studies in the former Soviet Union and it seems highly unlikely that their diet was rich in vitamin C. Hunt 1994 reported overall low plasma levels of vitamin C and the benefit of vitamin C was restricted to patients who had particular low vitamin C levels (1). Thus, in these trials the benefit of vitamin C supplementation was explained by treating ‘marginal vitamin C deficiency’. A similar proposal, emphasizing the low dietary intake levels, was also made to explain the reduction in common cold incidence in a set of trials with UK males by vitamin C (Hemilä 1997b). However, an explanation based on ‘marginal deficiency’ is not applicable to the Pitt 1979 trial, which reported high baseline vitamin C levels in the Pitt trial, the baseline plasma vitamin C level was 56 µmol/L, which corresponds to a dietary intake of 100 mg/day or more (Levine 1999). In contrast, in the more ill patients of Hunt 1994 the baseline vitamin C level was only 19.9 µmol/L and in the Mochalkin 1970 trial plasma vitamin C level dropped to 23 µmol/L in the control group. Thus, it seems that low dietary vitamin C intake
may not explain the findings in the Pitt 1979 trial. This trial used the highest vitamin C dose: 2 g/day. Participants of the Pitt 1979 trial were marine recruits in a training camp, that is under particularly stressful conditions. It is also worth noting that vitamin E, a lipid-soluble antioxidant which interacts with vitamin C, reduced the incidence of pneumonia by half in male smokers who carried out leisurely exercise (Hemila 2006b) and vitamin C reduced the risk of common cold in six trials with participants under heavy acute physical stress (Douglas 2004; Hemila 1996). Thus, it is possible that the particularly hard training of the military recruits of the Pitt 1979 trial is the reason why the high dose vitamin C supplementation was beneficial for some of their participants.

The explanation of ‘marginal deficiency’ is also not applicable to the comparison of the two vitamin C arms of the Mochalkin 1970 trial. Although the Hunt 1994 trial found a benefit of vitamin C supplementation only on the most ill patients who concurrently had low plasma vitamin C levels (), the Mochalkin 1970 trial found dose-dependency, indicating that the therapeutic effect of vitamin C supplementation was not limited to treating ‘marginal deficiency’ (). An indication of dose dependency up to 6 g/day of vitamin C was also found in a cold trial by Pitt 1979 (Hemila 1972). However, the Hunt 1994 combined the cases of acute bronchitis and pneumonia together. In young people, acute bronchitis usually has a viral etiology, whereas the majority of pneumonia cases are caused by bacteria. However, Hunt 1994 patients were all over 60 years of age and their acute bronchitis was “often acute exacerbation of chronic bronchitis”, implying bacterial etiology. The clinical definition of pneumonia and CURV has a substantial proportion of false negatives. For such reasons the combined outcome used in the Hunt 1994 trial was appropriate in the current review.

Safety of vitamin C
Pitt 1979 administered 2 g/day of vitamin C to 331 participants for two months. None of the reported symptoms that participants experienced were attributed to vitamin C (). However, 11 participants withdrew from this trial due to the large number of colds. Kinsman 1981 reported that he had administered orally over 100 grams per day of vitamin C to pneumonia patients, which indicated safety of such high doses for pneumonia patients, although such an uncontrolled observation does not provide evidence of benefit. There are few reports of severe harm caused by high-dose vitamin C administration and the death of a 68 year old African American man was not attributed to intravenous injection of 80 grams of vitamin C on two consecutive days per se but to his coincident glucose-6-phosphate dehydrogenase (G-6-PD) deficiency (Campeau 1972).

Mechanism of effect
Our review is largely based on the concept that vitamin C affects the immune system and thereby protects against infections in animals (Hemila 2006a). Such effects on the immune system are plausible explanations for the benefits observed in the prophylactic trials (Comparison 01.01). However, vitamin C also has non-immune effects that might be relevant in therapeutic trials.

Vitamin C is also needed for the synthesis of transporters and for the metabolism of neurotransmitters (Rice 2000) and carnitine which participates in energy metabolism (Hughes 1988; Jones 1982). In a study of experimentally induced vitamin C deficiency, Kinsman 1971 compared high and low levels of vitamin C in whole blood, 93 µmol/L and 25 µmol/L, respectively, and found that "scores in the neurotic triad of the Minnesota Multiphasic Personnality Inventory (the hypochondriasis, depression and hysteria scales) became elevated as deficiency of vitamin C increased". Therefore, it is possible that the effects that in the prophylactic trials found in patients with low vitamin C was due to the supplementation and not limited to the immune system. Vitamin C levels in whole blood are higher than plasma levels; Kinsman’s levels cannot be directly compared with the plasma levels reported by Hunt 1994 and Mochalkin 1970. Still, low vitamin C levels might cause psychological symptoms for which vitamin C supplementation might be beneficial. Some of the early case reports of pneumonia patients described particularly rapid benefits of vitamin C (Boehnholzer 1937; Dalton 1962; Klein 1948) and such rapid benefits might be caused by non-immunological effects rather than by immune mechanisms. On cold trials by Hemila 1972 the intervention group dropped by 44% in 10 days in the control group (), consistent with other studies that have found reductions in vitamin C levels with infections (Hemila 2006a). Neither Hunt 1994 nor Mochalkin 1970 measured any index of general well-being or psychological status.

Conclusions
The incidence of pneumonia is low in the middle-aged in Western countries: 1 to 3 per 1000 person-years (Baik 2000; Hemila 2004) and there is no rationale to study the prophylactic effect of vitamin C in such a population. Even if vitamin C did have an effect, the low baseline incidence would lead to very high number needed to treat (NNT) values. Also, the Merchant 2004 cohort study suggests that vitamin C intake level has no association with pneumonia risk in well-nourished, middle-aged people. Another population group with an elevated risk of pneumonia is elderly people, since the incidence increases with age (Baik 2000; Hemila 2004). A further population group with high risk of pneumonia are elderly people, since the incidence increases with age (Baik 2000; Hemila 2004).
is military recruits; the average incidence of pneumonia in marine and naval recruits in the 1970s was 60 per 1000 person-years in a US study (Pazzaglia 1983). The prophylactic effects of vitamin C should be investigated in such populations with a high incidence of pneumonia. Even if the benefit of vitamin C was substantially lower than in the three prophylactic trials analyzed in this review (Comparison 01.01) the effect might still be important. For example, with a baseline pneumonia incidence of 60 per 1000 person years, a reduction of risk by half would correspond to NNT = 33 over one year of such high risk. In the USA, pneumonia is the sixth most common cause of death and the most common cause of infection-related mortality, reflecting its importance (Donowitz 2005). Various infections lead to decreased vitamin C levels in plasma, leucocytes and urine, suggesting that vitamin C supplementation might have therapeutic effects on patients with infections (Hemilä 2006a). In addition, numerous animal studies found that vitamin C supplementation reduced mortality and morbidity caused by infections (Hemilä 2006a). With this background, the two published therapeutic trials analyzed in this review seem particularly important as they indicate that vitamin C supplementation might be beneficial for some groups of pneumonia patients. Furthermore, even if the benefit of vitamin C supplementation was limited to specific groups of patients, such as those with low vitamin C levels, the effect may be of wide interest given the common occurrence of this severe infection.

Reviewers' conclusions

Implications for practice

Vitamin C is relatively cheap and is safe in doses of grams per day. Nevertheless, with the current evidence there is no basis for the prophylactic use of vitamin C to prevent pneumonia because it would require continuous supplementation with poorly understood effects. While waiting for new trials, therapeutic vitamin C supplementation may be reasonable for patients with pneumonia who have low vitamin C plasma levels, since therapeutic administration is limited in time. With the low price of vitamin C, the cost-benefit ratio may be reasonable even if the benefit might be substantially lower than that observed in the therapeutic trials analyzed in this review.

Implications for research

The prophylactic use of vitamin C to prevent pneumonia should be investigated in populations who have a high incidence of pneumonia, in particular if the dietary vitamin C intake is low. This means, for example, children in developing countries, military recruits and elderly people. In ordinary middle-aged Western populations, there is no rationale to study the prophylactic effects of vitamin C. The study of the therapeutic effects of vitamin C on pneumonia patients is well justified, in particular in patients with low vitamin C plasma levels but possibly also with participants with ordinary plasma vitamin C levels. The outcomes of therapeutic trials should include soft outcomes measuring well-being because vitamin C may also have non-immune effects especially in participants with very low plasma vitamin C levels and pneumonia leads to substantial reduction in vitamin C levels.

Tables

Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Glazebrook 1942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Allocation in groupsQuasi-placebo control, see textCarried out in winter, duration 6 months</td>
</tr>
<tr>
<td>Participants</td>
<td>1435 schoolboys in a boarding school in the UK335 boys in vitamin C divisions (n = 2) and 1100 in control divisions (n = 5)Age range 15 to 20, mean 16 years</td>
</tr>
<tr>
<td>Interventions</td>
<td>Vitamin C 0.05 to 0.3 g/day added to the food in the kitchen</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Incidence of pneumonia</td>
</tr>
<tr>
<td>Notes</td>
<td>Allocation concealment C - Inadequate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Hunt 1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Randomised, placebo-controlled double-blind trialCarried out in October to December</td>
</tr>
<tr>
<td>Participants</td>
<td>57 elderly patients: 27 males, 30 females, age range 66 to 94, mean 81 years (28 vitamin C; 29 placebo)Hospitalized for acute bronchitis (n = 40) or pneumonia (n = 17)</td>
</tr>
<tr>
<td>Interventions</td>
<td>Vitamin C 0.2 g/dayTreatment for up to 4 weeks after hospitalization</td>
</tr>
<tr>
<td>Outcomes</td>
<td>MortalityChange in a score of clinical symptoms in 4 weeks (scale 3 to 10 with 3 corresponding to no symptoms and 10 to death during the follow up)</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
Study Kimbarowski 1967

Methods Allocation method not described, but study arms were of similar size (112 and 114 initially). Placebo not used. Blinding of outcome assessment not described, see text. Groups were balanced on the basis of disease severity at baseline, see text.

Participants 226 soldiers hospitalized for influenza A (114 vitamin C; 112 control).

Interventions Vitamin C 0.3 g/day.

Outcomes Incidence of bronchopneumonia after hospitalization.

Notes

Study Mochalkin 1970

Methods Allocation method not described. Quasi-placebo control, see text. Antibiotic treatments were balanced in study groups.

Participants 70 in control group, 39 in low vitamin C group and 31 in high vitamin C group.

Interventions High vit C: vitamin C 2 mg per 2000 antibiotic units (vitamin C range: 0.5 to 1.6 g/day). Low vit C (used as placebo group in the primary comparison): vitamin C 1 mg per 2000 antibiotic units (vitamin C range: 0.25 to 0.8 g/day).

Outcomes Period of recovery, Duration of fever, Duration of chest x-ray normalization.

Notes Control group was not administered placebo and thus the primary analysis focuses on the high and low vitamin C groups.

Study Pitt 1979

Methods Randomised, placebo-controlled double-blind, trial. Carried out in October to December, 8 week trial.

Participants 674 marine recruits in a training camp in the USA (331 vitamin C; 343 placebo).

Interventions Vitamin C 2 g/day.

Outcomes Incidence of pneumonia.

Notes

Characteristics of excluded studies

Study Dahberg 1944

Reason for exclusion: Military recruits in Sweden. 50 mg/day of vitamin C. The outcome is a mixture of tonsillitis, otitis, sinusitis, bronchitis and pneumonia making the trial potentially relevant. However, the cases of pneumonia or lower respiratory tract infection cannot be inferred from the outcome containing also upper respiratory infections.

Study Hunt 1984

Reason for exclusion: One group of diagnoses in the hospitalized patients was "respiratory infections" but it was not separated to lower and upper respiratory infections.
Different doses of vitamin C were administered to several study groups (range 20 to 300 mg/day) so that the lowest dose arm might be used as the control group. "Lung disease" was used as one of the outcomes making the trial potentially relevant. The data is, however, presented so ambiguously that no data could be extracted to this review.

References

References to studies included in this review

Pitt 1979 {published data only} Pitt HA, Costrini AM. Vitamin C prophylaxis in marine recruits. JAMA 1979;241:908-11. * indicates the major publication for the study

References to studies excluded from this review

Scheunert 1949 Scheunert A. Adult requirements for vitamin C. International Zeitschrift fur Vitaminforschung 1949;20:374-86.

Douglas 2004
Douglas RM, Hemilä H, D’Souza R, Chalker EB, Treacy B. Vitamin C for preventing and treating the common cold. Cochrane Database of Systematic Reviews 2004-.

Elwood 1976

Fine 2003

Gander 1936

Graham 1990

Greenland 1994

Hamilton 2000

Hemmila 2003

Hemmila 2004

Hemmila 2006a

Hemmila 2006b

Hess 1920

Hess 1932

Higgins 2005
Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions 4.2.5 [updated May 2005]. 2005:-.

Hopstaken 2004

Hrobjartsson 2001

Hrobjartsson 2005
Hrobjartsson A, Gotzsche PC. Placebo interventions for all clinical conditions. Cochrane Database of Systematic Reviews 2005:-.

Hughes 1988

IOM 2000

Jones 1982

Jones 2003

Karlofsky 1975

Kiekara 1996

Kinsman 1971

Klenner 1948
Klenner FR. Virus pneumonia and its treatment with vitamin C. Southern Medicine and Surgery 1948;110:36-8; 46-.

Klenner 1951

Levine 1999

Luberoff 1978
Luberoff BJ. Symptomectomy with vitamin C: a chat with Robert Cathcart, MD. Chemtech 1978;8:76-86.

Mahalanabis 2006

Melbye 1992

Merchant 2004

Nathens 2002

Packer 1979

Padayatty 2004

Pazzaglia 1983

Pio 2003

Poynard 2002

Rice 2000

Robertson 1934
Robertson EC. The vitamins and resistance to infection: vitamin C. Medicine 1934;13:190-206.

Rudan 2004

Sackett 1997

Selwyn 1990
Selwyn BJ. The epidemiology of acute respiratory tract infection in young children: comparison of findings from several developing countries. Reviews of Infectious Diseases 1990;12:870-88.

Shapiro 1997

Swingler 1998

Swingler 2003

Thomas 1978

WHO 1999a

WHO 1999b

Young 1994