Human hepatocellular carcinoma in a mouse model: assessment of tumor response to percutaneous ablation by using glyceraldehyde-3-phosphate dehydrogenase antagonists.


Source
Russell H Morgan Department of Radiology and Radiological Sciences and Department of Pathology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 545, Baltimore, MD 21287, USA.

Abstract

PURPOSE:
To characterize tumor response to percutaneous injection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antagonists in a mouse model of human hepatocellular carcinoma (HCC).

MATERIALS AND METHODS:
Animal experiments were approved by the Johns Hopkins University Animal Care and Use Committee. Luciferase (luc) gene-expressing Hep3B tumor-bearing athymic nude mice were randomly divided into four groups of six mice each. Tumor-specific GAPDH inhibition was achieved by using percutaneous injection of GAPDH antagonists-3-bromopyruvate (3-BrPA) or GAPDH-specific short hairpin RNA (shRNA). Tumor response to treatment was assessed by using bioluminescence imaging and analysis of GAPDH function and apoptotic markers (caspase-3, caspase-9, and positive staining for terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling). HCC samples from 34 patients were obtained from the Johns Hopkins tumor bank, as approved by the Institutional Review Board, for GAPDH expression analysis. Statistical analysis was performed by using a two-sample t test or Spearman rank correlation coefficient.

RESULTS:
In vitro, 3-BrPA affected Hep3B cell viability (half maximal inhibitory concentration = 0.15 mmol/L), and GAPDH shRNA suppressed (45.5%) colony formation. In vivo, percutaneous injection of GAPDH antagonists into luc-Hep3B tumors decreased bioluminescence imaging signal and viability (3-BrPA, P < .0001; GAPDH shRNA, P = .03). The 3-BrPA treatment primarily inhibited GAPDH activity (74.5%) compared with its expression (34.3%), whereas GAPDH shRNA inhibited both activity (60.6%) and expression (44.4%). Targeted inhibition of GAPDH by using 3-BrPA or shRNA induced apoptosis. HCC samples from patients demonstrated a strong correlation between GAPDH upregulation and the proto-oncogene c-jun expression (r = 0.543, P = .003).

CONCLUSION:

Percutaneous injection of GAPDH antagonists induces apoptosis and blocks Hep3B tumor progression, which demonstrates the therapeutic potential of targeting GAPDH in human HCC. PMID:22357885

Comment in

- Science to practice: What do molecular biologic studies in rodent models add to our understanding of interventional oncologic procedures including percutaneous ablation by using glyceraldehyde-3-phosphate dehydrogenase antagonists? [Radiology. 2012]


Science to practice: What do molecular biologic studies in rodent models add to our understanding of interventional oncologic procedures including percutaneous ablation by using glyceraldehyde-3-phosphate dehydrogenase antagonists?

Goldberg SN.

Source

Image-guided Therapy and Interventional Oncology Unit, Department of Radiology Hadassah Hebrew University Medical Center, Jerusalem, Israel.
sgoldber@bidmc.harvard.edu
Abstract

In this basic research study, Ganapathy-Kanniappan et al advance our understanding of how to block the glycolytic pathway to inhibit tumor progression by using image guided procedures (1). This was accomplished by demonstrating their ability to perform molecular targeting of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in human hepatocellular carcinoma (HCC) by using percutaneous injection of either inhibitor--3-bromopyruvate (3-BrPA) or short hairpin RNA (shRNA). They take the critical step of providing further rationale for potentially advancing this therapy into clinical trials by demonstrating that GAPDH expression strongly correlates with c-jun, a proto-oncogene involved in liver tumorigenesis in human HCC (2). PMID:22357877