Carcinoma hepatocelular. É importante inibir o IGF-IR: NVP-AEW541 é derivado sintético do NDGA

Possíveis tratamentos para inibir o IGF-1 e ou o IGF-1R
a- Silibinina: diminui o receptor do IGF-1 o IGF-1Rbeta e aumenta muito a proteína carregadora do IGF-1 a IGFBP-3 diminuindo assim a concentração plasmática do IGF-1
b- Ativadores da AMPK (AMP activated protein kinase):
 1- antocianinas: arroz preto (Oryza nigra), groselha preta (Black currant), uva preta, feijão preto, Sinadenium
 2- dieta com restrição de carboidratos com cetose
 3- metformina
c- Colecalciferol: aumenta IGFBP-3
d- Epigalocatequina-galato (inibe IGF-1R)
e- Resveratrol (inibe IGF-1R)
f- Genisteína: inibe IGF-1 e para outros os derivados da soja aumentam IGF-1
g- Inibidores da Angiotensina II (inibe IGF-1R)
h- Inibidores da Aldosterona (inibe IGF-1): Inspra (eplerenone), aldactone (espirolactona)
i- Amiloride: inibe o IGF-1 e o IGF-1R
j- NDGA: ácido nordihidroguaiarético, derivado da Larrea tridentata ou Larrea divaricata, “arbusto de creosoto” sendo conhecida erroneamente como “chaparral”: inibe o IGF1-R . José de Felippe Junior

Blockade of IGF-1 receptor tyrosine kinase has antineoplastic effects in hepatocellular carcinoma cells.

Höpfner M, Huether A, Sutter AP, Baradari V, Schuppan D, Scherübl H.

Source
Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Medical Clinic I,
Gastroenterology/Infectious Diseases/Rheumatology, 12200 Berlin, Germany.

Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death worldwide. Due to very poor 5-year-survival new therapeutic approaches are mandatory. Most HCCs express insulin-like growth factors and their receptors (IGF-R). As IGF-1R-mediated signaling promotes survival, oncogenic transformation and tumor growth and spread, it represents a potential target for innovative
treatment strategies of HCC. Here we studied the antineoplastic effects of inhibiting IGF-1R signaling in HCC cells by the novel IGF-1R tyrosine kinase inhibitor NVP-AEW541. METHODS AND RESULTS: NVP-AEW541 induced a time- and dose-dependent growth inhibition in the human hepatoblastoma and hepatocellular carcinoma cell lines SK-Hep-1, Hep-3B, Hep-G2 and Huh-7. Measurement of LDH-release showed that the antineoplastic effect of NVP-AEW541 was not due to cytotoxicity. Instead NVP-AEW541 induced apoptosis as evidenced by both caspase-3 and -8 activation as well as by apoptosis-specific morphological and mitochondrial changes. In addition, nuclear degradation was monitored by DNA-laddering. NVP-AEW541-treatment suppressed the expression of the antiapoptotic proteins Bcl-2 and survivin, while the expression of the proapoptotic protein BAX was stimulated in a dose-dependent manner. Moreover, NVP-AEW541 arrested the cell cycle at the G1/S checkpoint. When NVP-AEW541 was combined with cytotoxic chemotherapy or with a specific epidermal growth factor receptor antibody additive antiproliferative effects were observed. INTERPRETATION: Inhibition of IGF-1R tyrosine kinase (IGF-1R-TK) by NVP-AEW541 induces growth inhibition, apoptosis and cell cycle arrest in human HCC cell lines without accompanying cytotoxicity. Thus, IGF-1R-TK inhibition may be a promising novel treatment approach in HCC.

PMID:16530734