Ganoderma lucidum na pesquisa do câncer

Ganoderma lucidum in cancer research

Ganoderma lucidum, popular medicinal mushroom, has been used as a home remedy in traditional Chinese medicine (TCM) in many Asian countries during the past two millennia [1]. The regular consumption of G. lucidum in the form of tea or mushroom powder was believed to preserve the human vitality and to promote longevity [2]. G. lucidum has also been used for the prevention or treatment of a variety of diseases including cancer [3]. Western medicine started to accept natural products from the TCM and the popularity of herbal therapies for the treatment of cancer have been recently increasing in the United States [4]. Therefore, scientific justification based on the elucidation of mechanisms responsible for the biological effects of these natural products could help for their validation in alternative or adjuvant cancer therapies. The anticancer effects of G. lucidum were associated with triterpenes [5], polysaccharides [6, 7], or immunomodulatory proteins [8], through the mechanisms involving inhibition of DNA polymerase [9], inhibition of post-translational modification of the Ras oncogene [10], or the stimulation of cytokine production [11]. Moreover, G. lucidum:

(i) inhibits proliferation and invasive behavior of breast and prostate cancer cells through the down-regulation of expression of cyclin-D1 and suppression of secretion of urokinase-plasminogen activator (uPA) [12–14];
(ii) inhibits growth and induces apoptosis of breast and prostate cancer cells through the up-regulation of expression of p21 and Bax [15, 16];
(iii) inhibits growth of hepatoma cells through the suppression of protein kinase C [17];
(iv) induces apoptosis of colon cancer cells by increasing the activity of caspase-3 [18];
(v) suppresses angiogenesis through the inhibition of secretion of vascular endothelial growth factor (VEGF) and transforming growth factor 1 (TGF-1).

1) from prostate cancer cells [19]. In this issue of Leukemia Research, Müller et al. [20] evaluated the effect of G. lucidum on cancer cells of hematologic origin, and they found that G. lucidum inhibits proliferation and induces apoptosis in a variety of leukemia, lymphoma, and myeloma cells. Moreover, they showed that the inhibition of proliferation of acute myeloblastic leukemia HL-60 cells was associated with cell cycle arrest at G2/M phase and apoptosis, whereas the inhibition of proliferation and apoptosis of lymphoma U937 was mediated by the up-regulation of expression of p21 and p27. Therefore, Müller et al. further increased our knowledge about the anticancer effects of...
G. lucidum on hematopoietic cells, and confirmed that G. lucidum inhibits distinct signaling pathways in different cancer cells. Finally, they used standardized G. lucidum extract containing 0.15% ganoderic acid C2. Although triterpenes or triterpenoid fractions from G. lucidum previously demonstrated anticancer effects in vitro as well as in vivo, it is uncertain if this amount of ganoderic acid could be responsible for the effect of G. lucidum on hematopoietic cells. Nevertheless, the standardization of G. lucidum is crucial for its characterization since the composition and amount of biologically active triterpenes depend on the places of the production, cultivation conditions, extraction procedures and the strains of G. lucidum [21]. As recently demonstrated, some extracts of G. lucidum markedly inhibited intracellular signaling and invasive behavior of cancer cells, whereas other extracts did not show any effect [22]. Thus, the standardization of G. lucidum is necessary for the acceptance of G. lucidum as a natural product suitable for the treatment of cancer. The major obstacle for the acceptance of natural products in Western medicine is their complexity. However, this complexity can also bring significant advantages. For example, certain components in the natural products can reduce the cytotoxicity of the whole product, and the interaction between different biologically active components can be responsible for their in vivo effects [23]. In addition, different compounds can modulate unrelated signaling and therefore, can possess synergistic effect [24]. Thus, triterpenes in G. lucidum directly suppress growth and invasive behavior of cancer cells, whereas G. lucidum polysaccharides stimulate immune system resulting in the production of cytokines and activation of anti-cancer activities of immune cells [5, 25]. In conclusion, although the data from the recent studies demonstrating the effect of G. lucidum on the molecular level are promising, preclinical and clinical studies with G. lucidum are necessary for the validation of this natural product in the prevention and/or therapy of cancer.

0145-2126/$ – see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.leukres.2005.12.015
Guest editorial / Leukemia Research 30 (2006) 767–768

References
suppresses growth of breast cancer cells through the inhibition of Akt/NF-
YS, Kang KS.
Ganoderma lucidum
extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer
K, Sliva D.
Ganoderma lucidum
inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J
Oncol 2004;24:1093–100.[17] Lin SB, Li CH, Lee SS, Kan LS. Triterpene-enriched
extracts from Ganoderma lucidum
inhibit growth of hepatoma cells via suppressing protein kinase C, activating
mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sci
Ganoderma lucidum
on apoptotic and anti-inflammatory function in HT-29 human colonic
Slivova V, Jiang J, Sliva D.
Ganoderma lucidum
suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-
M"uller CI, Kumagai T, O’Kelly J, Seeram NP, Heber D, Koeffler HP.
Ganoderma lucidum
causes apoptosis in leukemia, lymphoma and multiple myeloma cells. Leuk Res
2006;30:841–8.[21] Hattori M. Recent studies on the bitter principles of
Ganoderma lucidum
— isolation of novel triterpenes, their biological activity and pharmacokinetics. In:
Proceedings of international symposium of Ganoderma science. 2001.[22] Sliva
D, Sedlak M, Slivova V, Valachovicova T, Lloyd Jr FP, HouWNY. Biologic activity of
Ganoderma lucidum
for the inhibition of highly invasive breast and prostate cancer cells. J Altern
Wilasrumee S, Kittur DS. In vitro immunomodulatory effects of ten commonly used
Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine
2001;8:401–9.[25] Lin ZB. Cellular and molecular mechanisms of immuno-
modulation by Ganoderma lucidum
Daniel Sliva
*
Cancer Research Laboratory, Methodist Research Institute, 1800 North Capitol Ave.,
E504, Indianapolis, IN 46202, United States