Consumo de leite pelos adultos aumenta o risco de Doença de Parkinson em 2,3 vezes. Cálcio não tem relação.

Consumption of milk and calcium in midlife and the future risk of Parkinson disease

Abstract

Objective: To examine the relation between milk and calcium intake in midlife and the risk of Parkinson disease (PD).

Methods: Findings are based on dietary intake observed from 1965 to 1968 in 7,504 men ages 45 to 68 in the Honolulu Heart Program. Men were followed for 30 years for incident PD.

Results: In the course of follow-up, 128 developed PD (7.1/10,000 person-years). Age-adjusted incidence of PD increased with milk intake from 6.9/10,000 person-years in men who consumed no milk to 14.9/10,000 person-years in men who consumed >16 oz/day (>1/2 litro) (p = 0.017). After further adjustment for dietary and other factors, there was a 2.3-fold excess of PD (95% CI 1.3 to 4.1) in the highest intake group (>16 oz/day) vs those who consumed no milk. The effect of milk consumption on PD was also independent of the intake of calcium. Calcium from dairy and nondairy sources had no apparent relation with the risk of PD.

Conclusions: Findings suggest that milk intake is associated with an increased risk of Parkinson disease. Whether observed effects are mediated through nutrients other than calcium or through neurotoxic contaminants warrants further study.

Milk consumption tied to Parkinson’s disease

Author: Amy Proal

In a recent prospective study appearing in Neurology, researchers at various scientific institutions including many in Korea set out to examine the relation between milk and calcium intake in midlife and the risk of Parkinson’s disease. The team analyzed data based on records of dietary intake observed from 1965 to 1968 in 7,504 men enrolled in a cohort called the Honolulu Heart Program. The men ranged from 45 to 68 years of age.

Parkinson’s disease (PD) is a degenerative condition affecting movement and balance in more than one million Americans each year: its prevalence is expected to rise in aging populations.

The men were followed for three decades. At that point, 128 men had developed Parkinson’s. But... cue drum roll... the risk of Parkinson’s disease increased as the amount of milk consumed each day rose. Heavy milk drinkers, who drank more than 16 oz a day, were 2.3 times more likely to develop Parkinson’s disease than those men who didn’t drink any milk. Milk was related to PD whether it was whole or skim.

One may ask, “Why?” The beautiful person with the milk mustache in the latest magazine ad told me milk was good for me!
Perhaps it’s the calcium? Nope. The team, under Dr. Park, used careful statistical analysis to rule out the possibility that calcium could have caused the increased disease incidence. “In addition, calcium intake from non-dietary sources was not related to PD, further suggesting that a role for calcium in altering PD risk is absent,” states the paper, which was published in the March issue of the Journal of Neurology.

Total fat and protein also had no relation with the risk of PD. Park and team suggest that neurotoxins such as organochlorine, tetrahydroisoquinoline, and heptachlor may be to blame, but even they would concede that this explanation is speculative at best. In fact, according to the study’s authors, “Unfortunately, there are no clear explanations for the relation between milk intake and the risk of PD.”

What the researchers fail to even consider is that since the 1930’s, milk suppliers have been fortifying milk with vitamin D. According to, A. W. Norman in the book, Vitamin D: The calcium homeostatic steroid hormone, “There developed in the 1940’s, and continues to the present, a large business of industrial production of vitamin D3 used for the supplementation of foods for human consumption: milk (both homogenized and evaporated), some margarine and breads. Since the 1960’s vitamin D3 has been used also for the supplementation of farm animal and poultry food. In 1973 in the United States some 290 trillion (290 x 10^12) International Units of vitamin D3 was manufactured and sold for over 3 million dollars. This vitamin D3 is the equivalent of approximately 8 tons.”

This strongly suggests that the men in the Honolulu heart study were drinking vitamin D fortified milk. With this in mind, the powerful secosteroid incorrectly labelled “vitamin” D seems like an extremely logical culprit for the rise in PD amongst subjects drinking higher amounts of milk. As described in this recent paper, vitamin D’s steroidal properties allow it slow the innate immune response. While this allows for palliation and symptom reduction in the short-term, it causes chronic bacteria that very likely contribute to the progression of PD to proliferate more easily.

When writing previously about vitamin D, I’ve argued that, “One of the abiding weaknesses of studies on vitamin D is that researchers do not follow subjects consuming the secosteroid for a sufficient period of time. Instead they track subjects over the course of weeks, months, or one or two years, during the period of time when study participants are usually feeling the palliative effects of the secosteroid. Researchers will rarely, if ever, track subjects over the course of decades, the length of time needed to begin to note the negative changes that chronic bacteria cause later in life.”

So hooray for the authors of the Honolulu Heart Study who spent the time and money to monitor subjects for 30 years after their dietary intake was reported. Clearly, when it comes to vitamin D, patience is needed for the negative impact of consuming the secosteroid to be noted.

Another clue that vitamin D likely caused the increase in PD risk among men drinking more milk in the Honolulu study was that consumption of cheese and ice-cream did not affect PD risk. The explanation? Although these products are made from milk, they are generally made from milk before it has been fortified with vitamin D.

That Park and team did not even consider the vitamin D in milk as a possible cause for the increase PD among men consuming more of the substance speaks to the incredible strength of the current consensus that fails to recognize the immunosuppressive properties of vitamin D. This is bound to change, but in the meantime, vitamin D fortified milk should at least come with the message, “Immunosuppressive steroid included at no extra charge!!”